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Amplitude to phase noise conversion in electronic circuits
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The conversion mechanisms of amplitude noise to phase noise in high-precision oscillators are well estab-
lished, but the converse is not true. In this paper phase to amplitude noise conversion is reviewed first, and a
simple explanation is proposed for amplitude to phase noise convelSibd63-651X97)03112-7

PACS numbes): 05.40+j, 06.30.Ft, 84.30.Ng

I. INTRODUCTION
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A considerable body of literature deals with the conver- ty

sion of noise to and from the amplitude and phase domains,
with special emphasis on the topic of squeezed stltes and if we letAt=t,—t;, to=(t,+t;)/2, then we find
Still other papers cover the topic of amplitude to phase noise
conversion in semiconductor las¢®. Very general conver-

sion mechanisms of phase noise to amplitude noise are also Flw)= A{ gl eei(wg— o)ty M
well established3]. W~ w
Nonetheless there is no known mechanism that may ex- SiN(wo+ w)At
plain at the classical level the conversion of low-frequency _eiegTilwgteg> 20 T IR 2)
1/f amplitude noise to low-frequency phase noise: The wot

works cited above — the one on squeezed states, for instance

— do not help, since they deal essentially with quantum Now consider the signals produced by an oscillator such
mechanical properties of the signal. This is unfortunate, beas a laser: each signal is coherent only over a limited time,
cause while the generation of low-frequency amplitude noiséince there are random events that introduce small phase
is fairly well understood4] , the same is not true for phase shifts[7], and the whole signal of duratichcan be split into
noise, and a conversion mechanism would provide an easy set of much shorter coherent pulses of individual duration
way to explain the ¥/ component of phase noise found in At; and centered at timg . A device like a laser acts as an
the highly stable oscillators used for precise timekeepfijy ~ oscillator with positive feedback and tkidea) output signal
This low-frequency behavior of clocks is a severely limiting has a constant amplitude, and because of the sum property of
factor in many delicate measuremef@. Here | briefly re- the FT’s, the FT of the output signal is given by the sum of
view the mathematics of phase to amplitude noise converthe FT’s of the pulses, i.e., it is given by

sion, and | propose a simple mechanism that may account for

amplitude to phase noise conversion. i — .
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Spectral lines are broadened by phase noise, and this ef- — e i¢jeTi(wgt 0t M , ®)

fect can be easily calculated as follows: Consider a sinu- wot @

soidal signal with fixed amplitudA that starts at timé; and

ends at time,, its Fourier transforr{FT) is and the power spectral densiySD is proportional to
Sin(wp— w)At; Sin(wg+ w)At, Sin(wg— w) Aty
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The original order of the pulses in the signal gets lost inboundaries due to phase jumitkis is the usual Gibbs phe-
Eqg. (4) so that, with a sufficiently long signal and with the nomenon, see, e.g., Rd8]): Figure 1 shows a practical
phases performing a random walk so that at the end they aexample.
uniformly distributed in the interval 0,27), by averaging

over the set ofp’s one obtains lIl. AMPLITUDE TO PHASE NOISE CONVERSION
Sif(wo— w)At;  SifP(wo+ w)At,; We saw in Sec. Il how a nonlinear mechanism such as
(|F(w)|2>=A22 > > bandpass filtering performs amplitude to phase noise conver-
J (wo—w) (wo+ w) sion. The reverse is also possible if there is a corresponding

nonlinear mechanism in the amplitude domain. Indeed, high-
recision clocks count the number of periods of an oscillator

Now, if we assume that the dephasing events have a Poi ith  bistable thresholding device like a Schmi
son statistics, so that their occurrence over time is given b{‘/‘”t some sort of bistable thresholding device like a Schmitt

an exponential distribution, the sum in EG) can be re- tigger [9—11, which provides the proper nonlinearity.
placed by the integral Consider an amplitude modulated signal, like

Ctir( f(t)=A[1+g(t)]coswct, (8)
(R = L[] Sl v
T o T l (wp— w)? where w¢ is the carrier frequency, anglt) is the modula-
tion envelope(usually band limited to a frequency band
Sirf(wo+w) 7 [—W,W] such thatW< wc). Usually |g(t)|<1, but here
+ W dt we take|g(t)| <1, so thatf(t) actually resembles the output
0 of a stable oscillator. Obviouslf(t) has the same zeros as
27 27 the carrier signal casact, and this means that if one were able
= 2( > 7 T > 2 to use the zero crossings bft) for counting the number of
Hwo—w)*7°+1  A(wotw) r+1 oscillator periods, then amplitude modulation would have no

(6) effect whatsoever on the counting precision. However, this is
not usually the case, and we now consider two cases sepa-
where 7 is the average time between two dephasing eventgately, i.e., the case of a nonzero thresh@iith or without
T/ 7 is the average number of pulses in the signal: Eventuallyvhite noise added to the signaind the case of a zero thresh-
the two-sided PSD®PSD) of the signal is given by old (in the presence of some kind of white ndistn both
instances we assume that the threshold device has hysteresis
27 just as the above-mentioned Schmitt trigger: for positive
m threshold crossing§.e., from below to a_bov_e threshold is
only the upper threshold of the Schmitt trigger that matters

1
DPSP= fim —=(|F (w)|?)=A?

T—ow

2 as long as the lower threshold is sufficiently distant to guar-
+ #] (7) antee that there is no immediate retriggering because of the
A wotw)m+1 white noise added to the signal.

(in agreement with Ref.3]). Therefore the PSD of the fixed
amplitude signal with coherence timehas a simple Lorent-
zian shape. As specified above, we now assume that counting occurs
Now if we filter the signal, e.g., with a bandpass filter, theat the upward crossing of a positive threshbl@see Fig. 2
filtered output is amplitude modulated, i.e. there is a conversince the modulation envelope changes slowly, each half-
sion of phase to amplitude noise. To see how this may hapseriod of f(t) is well approximated by an arc of sinusoid
pen, notice that the sudden phase change in the idealizedith an amplitude equal to the instantaneous value of the
signal implies a discontinuity in the function and this meansmodulation envelope, therefore the threshold crossing is
that there cannot be any high-frequency cutoff in the PSD ofphase delayed with respect to the zero crossing by an amount
the original signal, as in Eq.7). If the signal is bandpass b
filtered the high-frequency components must necessarily dis- _ ;
appear, and this leads to fluctuations near the discontinuity @(t)—wcarcsmA(—t), ©

A. Nonzero threshold
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FIG. 1. A single signal composed of many pulses of equal length and with uniformly distributed phase jumps: These two rather
unphysical assumptions have been made to emphasize the effect of bandpass filtering. The graph on the top shows the signal before filtering:
all pulses have the same amplitude, and the phase jumps are clearly visible. The graph on the the bottom shows the signal after bandpass
filtering: now it is smooth but the amplitude is no longer constant. The bandpass filter used in this exan@te Teas
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FIG. 2. This figure illustrates what happens when a slow amplitude modulation is present in a thresholding circuit: each half-period of
the amplitude modulated wave form is approximately sinusoidal and half periods with a smaller amplitude lead to greater phase delays for
a given threshold. Since we approximate each half period with a sinusoid, we can easily estimate thatdedags\t, (as explained in
the main text
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FIG. 3. This figure shows a the phase PSD obtained in a numerical simulation with a nonzero threshold. Here the wave form is not
modulated by a noise processes but by a fixed frequency term with a frequency ten times lower than the carrier frequency; Gaussian white
noise is also present in the original wave form. The PSD is the average of eight spectral densities, and each spectral density has been
obtained from 1024 samples.

where A(t)=A+AA(t)=A[1+9g(t)] is the instantaneous portional to the amplitude PSD. Figure 3 shows the result of
amplitude of the carrier signdby hypothesis, the modula- a numerical simulation.

tion envelope changes very slowly with respect to the carrier

signal, and therefore this “instantaneous” value must be un-

derstood as “average magnitude of the modulation envelope B. Zero threshold with white noise

over one half-period of the carriey”’ Then, if It is clear from Eq.(13) that, as the threshold value
approaches 0, the previous mechanism fails, and is unable to
_ b account for the conversion of amplitude to phase noise.
Qo= wcarcsin- (10 o . . ) .
A However, noise in oscillators usually contains white noise as

well as low-frequency colored noise, and this combines with
is the phase delay for a constant amplitude signal, we finthe previous result to give once again a phase PSD propor-

that for a modulated signal tional to the amplitude PSD.
To see how this may happen, consider a uniformly dis-
. b tributed white noise, i.e., a noise procesd) that has a
¢ =gt Ap(t)=wcarcsing FAA(D uniform distribution with zero mean and width and such
that(n(t)n(t"))=(s*12)8(t—t’) (we deviate here from the
b b usual assumption of Gaussian noise, because in this case
=wc| arcsiny — A\/K—_ﬁbAA(t) (D uniformly distributed white noise is so much easier to treat

Now assume that the noisy signal is sampled at discrete in-
tervals: if the noise standard deviation is much smaller than

ie., ) . ) . . .
the signal amplitude, the sinusoidal signal can be approxi-
b mated by a linear function with slogein the zeroirossing
Ap(t)=—wc———=AA(l) = — wc—=—==09(1), region, and each signal sample has a mean valaat’,
AVA?—b? VA?—Db? where the time’ is measured relative to the zero crossing, as

(12 in Fig. 4. Since the noise has a uniform distribution, the zero
crossing may take place in a limited time span
so that —sf2a<t’<s/2a, as shown in Fig. 4. Assume also that the
22 signal amplitudex is sampled aiN uniformly spaced times
PS . %c PS ty=—sl2a+ks/na, with k=1,...n (the sampling se-
PP ()= —Az(Ag_bz)q) AAM), (13 quence starts exactly at the beginning of the useful time
span, but this special hypothesis is not very relevant if we let

and therefore any amplitude noise is converted to a phase>1 at the endl Thenx_k= at, = —s/2+ks/n, and the prob-
noise by the thresholding device, and the phase PSD is pr@bility that the sampled amplitude is above threshold is
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FIG. 4. This figure illustrates what happens to threshold crossing in the case of a sampled signal with uniformly distributed white noise:

because of noise, triggering occurs earlier than expédaidtis example at timg,), when the signal is — on average — different from zero.

px=(s/2+ x)/s=k/n , while the probability that the
sampled amplitude is below zeroqg=1—py=1—k/n. The
probability that the threshold crossing takes plagactlyat
the kth sample is given by the probability that thke-1 pre-
vious samples are all below threshold, and that kitle
sample is above threshold, i.e., by the expression

J=k1 7kt ji\lk_ k n
Pl e 9] (1_ﬁ> nopkel (n=kt

(14

the sampling interval- s/2a<t’<s/2a. This agrees qualita-
tively with the result of Rice on the threshold crossing rate of
a noise procedd 2], which leads to a divergent crossing rate
for noises with power spectra proportionaldo X with k<4

— which means that the average waiting time for threshold
crossing is negligibly small for such noise processes and for
white noise in particular.

Actually, the PSD of any real noise process falls to zero at
high frequency, so that the argument eventually fails, but
nevertheless it indicates that on average the zero crossing
happens at a time — in the example= —s/2a — when the

This expression can be expanded using the Stirling approxpscillator signal is not zero: This means that there is a phase

mation:
InP,~Ink—(k+1)Inn+(n Inn—n)
—[(n=K)In(n—=k)—(n—k)] (15

=Ink—(k+1)Inn+n Inn—(n—=Kk)In(n—k)—k, (16)

and therefore if we tred as if it were a continuous variable,

we find thatP, peaks when

dinP, 1 | | D=0
gk K Inn+ n(n—k)=0,

i.e., when

1_ n _ 1
T =k 1-Kk/n’

It is easy to see that, as grows, the maximum of this

probability moves to lower and lower values lofn, i.e., as

advance

S

p=wct'=—wc5, (17)
and, sincea=Aw¢, then
t > 18
e(t) 2A00 (18
If
> 19
Po= oA (19

is the phase advance for a fixed amplitude signal, then

e(t)=@otAp(t)= (20

S
- 2[A+AA(D)]

the number of samples increases, it is more and more prob-
able to find the threshold crossing at the very beginning ofind
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FIG. 5. This figure shows a the phase PSD obtained in a numerical simulation with threshold set at zero. Here the wave form is not
modulated by a noise processes but by a fixed frequency term with a frequency ten times lower than the carrier frequency; Gaussian white
noise is also present in the original wave form. The PSD is the average of eight spectral densities, and each spectral density has been
obtained from 1024 samples.

S s The argument given above is not a real proof, but it shows

Ap(t)=_—ZAA()=59(1). (21)  that it is plausible to expect an amplitude to phase noise

2A conversion even when the threshold is set at zero amplitude:

Therefore we find, as in the previous section, that the phas€his conclusion is also supported by numerical simulations.

PSD is proportional to the amplitude PSD, i.e., Figure 5 shows the PSD of the phase of a sinusoidal signal

modulated at a fixed frequency plus a white Gaussian noise:

the peak corresponds to the frequency of the modulation en-
velope.

82
DPSA@(1)= mchSD(AA(t)). (22)
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FIG. 6. This is what happens when the lower threshold is set incorrectly: the triggering circuit does not only trigger at the correct times
but at other times in between. The clock rate is thus higher, and there are additional and rather large phase fluctuations. These phase
fluctuations appear over many length scales, and thus the resulting phase PSD follows a power law. It turns out in the numerical simulations
that a Gaussian white noise leads to & ®SD.
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C. Wrong setting of lower threshold overcome this problem is a very small randomization of the

It is worthwhile to note that there is an additional effect S2mpling time. However, even if the simulations involve a
that shows up in the simulations when the lower threshold i$ampling mechanism they are — after all — quite realistic: a
set incorrectly, i.e., when it happens that the bistable circuifeal circuit like the commercial TTL Schmitt trigger 7414
often retriggers almost immediately after one good trigger. Irhas a finite response tinié this case for most circuits on
these cases, the average crossing frequency is higher than ¢ market it is of the order of 1§ s) and this is the
real crossing frequency, and the crossing times show largequivalent of a sampling time.
fluctuations with respect to the average. The numerical simu-
lations performed with a Gaussian white noise show that the IV. SUMMARY AND CONCLUDING REMARKS

PSD of these fluctuations follows a power law, and in par- In thi 'h d ibed hanism that
ticular that®PSD(e (1)) w2 (see Fig. 6. n this paper | have described a mechanism that may ac-

count for the appearance of low-frequency phase noise in
high-precision oscillators. Low-frequency noise is the main
limiting factor to high-precision timekeeping, and thus an
A few caveats are in order when dealing with the numeri-understanding of the origin of this noise is obviously impor-
cal simulations. First it is not reasonable to expect a lineatant for many physics applications of these fundamental
behavior such as that in Egd3) and (22) for large modu- measurement techniqué¢6,13]. The basic idea is that the
lation signals: This means that rather lengthy simulations araonlinear threshold device used to count cycles, and the ever
required to bring the tiny peaks out of noise. The simulationgpresent white noise, are the culprits of amplitude to phase
must necessarily use sampled signals, and because of theise conversion, in a way that is reminiscent of the increase
limited numerical accuracy of any computer this is bound toof signal to noise ratio in stochastic resonafnt4,15. An
produce beats between the sampling frequency and thaccurate choice of threshold and a minimization of white
modulation frequency: one of the many solutions that helmoise may thus help reduce low-frequency noise.

D. Comments on the numerical simulations
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