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Amplitude to phase noise conversion in electronic circuits

Edoardo Milotti*
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The conversion mechanisms of amplitude noise to phase noise in high-precision oscillators are well estab-
lished, but the converse is not true. In this paper phase to amplitude noise conversion is reviewed first, and a
simple explanation is proposed for amplitude to phase noise conversion.@S1063-651X~97!03112-7#

PACS number~s!: 05.40.1j, 06.30.Ft, 84.30.Ng
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I. INTRODUCTION

A considerable body of literature deals with the conv
sion of noise to and from the amplitude and phase doma
with special emphasis on the topic of squeezed states@1#.
Still other papers cover the topic of amplitude to phase no
conversion in semiconductor lasers@2#. Very general conver-
sion mechanisms of phase noise to amplitude noise are
well established@3#.

Nonetheless there is no known mechanism that may
plain at the classical level the conversion of low-frequen
1/f amplitude noise to low-frequency phase noise: T
works cited above — the one on squeezed states, for inst
— do not help, since they deal essentially with quant
mechanical properties of the signal. This is unfortunate,
cause while the generation of low-frequency amplitude no
is fairly well understood@4# , the same is not true for phas
noise, and a conversion mechanism would provide an e
way to explain the 1/f component of phase noise found
the highly stable oscillators used for precise timekeeping@5#:
This low-frequency behavior of clocks is a severely limitin
factor in many delicate measurements@6#. Here I briefly re-
view the mathematics of phase to amplitude noise con
sion, and I propose a simple mechanism that may accoun
amplitude to phase noise conversion.

II. PHASE TO AMPLITUDE NOISE CONVERSION

Spectral lines are broadened by phase noise, and thi
fect can be easily calculated as follows: Consider a si
soidal signal with fixed amplitudeA that starts at timet1 and
ends at timet2, its Fourier transform~FT! is
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F~v!5E
t1

t2
A sin~v0t1w!e2 ivtdt, ~1!

and if we letDt5t22t1, t05(t21t1)/2, then we find

F~v!5
A

i H eiwei ~v02v!t0
sin~v02v!Dt

v02v

2e2 iwe2 i ~v01v!t0
sin~v01v!Dt

v01v J . ~2!

Now consider the signals produced by an oscillator su
as a laser: each signal is coherent only over a limited tim
since there are random events that introduce small ph
shifts@7#, and the whole signal of durationT can be split into
a set of much shorter coherent pulses of individual durat
Dt j and centered at timet j . A device like a laser acts as a
oscillator with positive feedback and the~ideal! output signal
has a constant amplitude, and because of the sum proper
the FT’s, the FT of the output signal is given by the sum
the FT’s of the pulses, i.e., it is given by

F~v!5
A

i (j
H eiw jei ~v02v!t j

sin~v02v!Dt j

v02v

2e2 iw je2 i ~v01v!t j
sin~v01v!Dt j

v01v J , ~3!

and the power spectral density~PSD! is proportional to
uF~v!u25A2(
j ,k

Feiw jei ~v02v!t j
sin~v02v!Dt j

v02v
2e2 iw je2 i ~v01v!t j

sin~v01v!Dt j

v01v GFe2 iwke2 i ~v02v!tk
sin~v02v!Dtk

v02v

2eiwkei ~v01v!tk
sin~v01v!Dtk

v01v G
5(

j
H sin2~v02v!Dt j

~v02v!2
1

sin2~v01v!Dt j

~v01v!2 J 1(
j Þk

ei ~w j 2wk!ei ~v02v!~ t j 2tk!
sin~v02v!Dt j

v02v

sin~v02v!Dtk

v02v
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1(
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sin~v01v!Dt j

v01v

sin~v01v!Dtk

v01v

2(
j ,k

ei ~w j 1wk!ei ~v02v!t jei ~v01v!tk
sin~v02v!Dt j

v02v

sin~v01v!Dtk

v01v

2(
j ,k
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v01v
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The original order of the pulses in the signal gets lost
Eq. ~4! so that, with a sufficiently long signal and with th
phases performing a random walk so that at the end they
uniformly distributed in the interval@0,2p), by averaging
over the set ofw ’s one obtains

^uF~v!u2&5A2(
j

H sin2~v02v!Dt j

~v02v!2
1

sin2~v01v!Dt j

~v01v!2 J .

~5!

Now, if we assume that the dephasing events have a P
son statistics, so that their occurrence over time is given
an exponential distribution, the sum in Eq.~5! can be re-
placed by the integral

^uF~v!u2&5
T

t
A2E

0

`e2t/t

t H sin2~v02v!t

~v02v!2

1
sin2~v01v!t

~v01v!2 J dt

5TA2S 2t

4~v02v!2t211
1

2t

4~v01v!2t211
D
~6!

wheret is the average time between two dephasing eve
T/t is the average number of pulses in the signal: Eventu
the two-sided PSD (FPSD) of the signal is given by

FPSD5 lim
T→`

1

T
^uF~v!u2&5A2H 2t

4~v02v!2t211

1
2t

4~v01v!2t211
J ~7!

~in agreement with Ref.@3#!. Therefore the PSD of the fixe
amplitude signal with coherence timet has a simple Lorent-
zian shape.

Now if we filter the signal, e.g., with a bandpass filter, t
filtered output is amplitude modulated, i.e. there is a conv
sion of phase to amplitude noise. To see how this may h
pen, notice that the sudden phase change in the idea
signal implies a discontinuity in the function and this mea
that there cannot be any high-frequency cutoff in the PSD
the original signal, as in Eq.~7!. If the signal is bandpas
filtered the high-frequency components must necessarily
appear, and this leads to fluctuations near the discontin
re
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boundaries due to phase jumps~this is the usual Gibbs phe
nomenon, see, e.g., Ref.@8#!: Figure 1 shows a practica
example.

III. AMPLITUDE TO PHASE NOISE CONVERSION

We saw in Sec. II how a nonlinear mechanism such
bandpass filtering performs amplitude to phase noise con
sion. The reverse is also possible if there is a correspond
nonlinear mechanism in the amplitude domain. Indeed, hi
precision clocks count the number of periods of an oscilla
with some sort of bistable thresholding device like a Schm
trigger @9–11#, which provides the proper nonlinearity.

Consider an amplitude modulated signal, like

f ~ t !5A@11g~ t !#cosvCt, ~8!

wherevC is the carrier frequency, andg(t) is the modula-
tion envelope~usually band limited to a frequency ban
@2W,W# such thatW! vC). Usually ug(t)u,1, but here
we takeug(t)u!1, so thatf (t) actually resembles the outpu
of a stable oscillator. Obviouslyf (t) has the same zeros a
the carrier signal cosvCt, and this means that if one were ab
to use the zero crossings off (t) for counting the number of
oscillator periods, then amplitude modulation would have
effect whatsoever on the counting precision. However, thi
not usually the case, and we now consider two cases s
rately, i.e., the case of a nonzero threshold~with or without
white noise added to the signal! and the case of a zero thres
old ~in the presence of some kind of white noise!. In both
instances we assume that the threshold device has hyste
just as the above-mentioned Schmitt trigger: for posit
threshold crossings~i.e., from below to above threshold! it is
only the upper threshold of the Schmitt trigger that matt
as long as the lower threshold is sufficiently distant to gu
antee that there is no immediate retriggering because of
white noise added to the signal.

A. Nonzero threshold

As specified above, we now assume that counting occ
at the upward crossing of a positive thresholdb ~see Fig. 2!:
since the modulation envelope changes slowly, each h
period of f (t) is well approximated by an arc of sinuso
with an amplitude equal to the instantaneous value of
modulation envelope, therefore the threshold crossing
phase delayed with respect to the zero crossing by an am

w~ t !.vCarcsin
b

A~ t !
, ~9!
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FIG. 1. A single signal composed of many pulses of equal length and with uniformly distributed phase jumps: These tw
unphysical assumptions have been made to emphasize the effect of bandpass filtering. The graph on the top shows the signal befo
all pulses have the same amplitude, and the phase jumps are clearly visible. The graph on the the bottom shows the signal afte
filtering: now it is smooth but the amplitude is no longer constant. The bandpass filter used in this example hasQ.16.

FIG. 2. This figure illustrates what happens when a slow amplitude modulation is present in a thresholding circuit: each half-p
the amplitude modulated wave form is approximately sinusoidal and half periods with a smaller amplitude lead to greater phase d
a given threshold. Since we approximate each half period with a sinusoid, we can easily estimate the delaysDt1 andDt2 ~as explained in
the main text!.
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FIG. 3. This figure shows a the phase PSD obtained in a numerical simulation with a nonzero threshold. Here the wave for
modulated by a noise processes but by a fixed frequency term with a frequency ten times lower than the carrier frequency; Gaus
noise is also present in the original wave form. The PSD is the average of eight spectral densities, and each spectral density
obtained from 1024 samples.
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where A(t)5A1DA(t)5A@11g(t)# is the instantaneou
amplitude of the carrier signal~by hypothesis, the modula
tion envelope changes very slowly with respect to the car
signal, and therefore this ‘‘instantaneous’’ value must be
derstood as ‘‘average magnitude of the modulation envel
over one half-period of the carrier’’!. Then, if

w05vCarcsin
b

A
~10!

is the phase delay for a constant amplitude signal, we
that for a modulated signal

w~ t !5w01Dw~ t !.vCarcsin
b

A1DA~ t !

.vCS arcsin
b

A
2

b

AAA22b2
DA~ t !D , ~11!

i.e.,

Dw~ t !.2vC

b

AAA22b2
DA~ t !52vC

b

AA22b2
g~ t !,

~12!

so that

FPSD
„w~ t !….

vC
2 b2

A2~A22b2!
FPSD

„A~ t !…, ~13!

and therefore any amplitude noise is converted to a ph
noise by the thresholding device, and the phase PSD is
r
-
e

d

se
o-

portional to the amplitude PSD. Figure 3 shows the resul
a numerical simulation.

B. Zero threshold with white noise

It is clear from Eq.~13! that, as the threshold valueb
approaches 0, the previous mechanism fails, and is unab
account for the conversion of amplitude to phase no
However, noise in oscillators usually contains white noise
well as low-frequency colored noise, and this combines w
the previous result to give once again a phase PSD pro
tional to the amplitude PSD.

To see how this may happen, consider a uniformly d
tributed white noise, i.e., a noise processn(t) that has a
uniform distribution with zero mean and widths, and such
that ^n(t)n(t8)&5(s2/12)d(t2t8) ~we deviate here from the
usual assumption of Gaussian noise, because in this
uniformly distributed white noise is so much easier to trea!.
Now assume that the noisy signal is sampled at discrete
tervals: if the noise standard deviation is much smaller th
the signal amplitude, the sinusoidal signal can be appro
mated by a linear function with slopea in the zero crossing
region, and each signal sample has a mean valuex̄ 5at8,
where the timet8 is measured relative to the zero crossing,
in Fig. 4. Since the noise has a uniform distribution, the z
crossing may take place in a limited time sp
2s/2a,t8,s/2a, as shown in Fig. 4. Assume also that th
signal amplitudex is sampled atN uniformly spaced times
tk52s/2a1ks/na, with k51, . . . ,n ~the sampling se-
quence starts exactly at the beginning of the useful ti
span, but this special hypothesis is not very relevant if we
n@1 at the end!. Then x̄ k5atk852s/21ks/n, and the prob-
ability that the sampled amplitude is above threshold
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FIG. 4. This figure illustrates what happens to threshold crossing in the case of a sampled signal with uniformly distributed whi
because of noise, triggering occurs earlier than expected~in this example at timet0), when the signal is — on average — different from ze
ox
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pk5(s/21 x̄ k)/s5k/n , while the probability that the
sampled amplitude is below zero isqk512pk512k/n. The
probability that the threshold crossing takes placeexactlyat
the kth sample is given by the probability that thek21 pre-
vious samples are all below threshold, and that thekth
sample is above threshold, i.e., by the expression

Pk5F S )
j 50

j 5k21

qj D Gpk5F )
j 50

j 5k21 S 12
j

nD Gk

n
5

k

nk11

n!

~n2k!!
.

~14!

This expression can be expanded using the Stirling appr
mation:

lnPk' lnk2~k11!lnn1~n lnn2n!

2@~n2k!ln~n2k!2~n2k!# ~15!

5 lnk2~k11!lnn1n lnn2~n2k!ln~n2k!2k, ~16!

and therefore if we treatk as if it were a continuous variable
we find thatPk peaks when

d lnPk

dk
5

1

k
2 lnn1 ln~n2k!50,

i.e., when

exp
1

k
5

n

n2k
5

1

12k/n
.

It is easy to see that, asn grows, the maximum of this
probability moves to lower and lower values ofk/n, i.e., as
the number of samples increases, it is more and more p
able to find the threshold crossing at the very beginning
i-

b-
f

the sampling interval2s/2a,t8,s/2a. This agrees qualita-
tively with the result of Rice on the threshold crossing rate
a noise process@12#, which leads to a divergent crossing ra
for noises with power spectra proportional tov2k with k<4
— which means that the average waiting time for thresh
crossing is negligibly small for such noise processes and
white noise in particular.

Actually, the PSD of any real noise process falls to zero
high frequency, so that the argument eventually fails,
nevertheless it indicates that on average the zero cros
happens at a time — in the examplet8.2s/2a — when the
oscillator signal is not zero: This means that there is a ph
advance

w5vCt8.2vC

s

2a
, ~17!

and, sincea5AvC , then

w~ t !.2
s

2A~ t !
. ~18!

If

w0.2
s

2A
~19!

is the phase advance for a fixed amplitude signal, then

w~ t !5w01Dw~ t !.2
s

2@A1DA~ t !#
~20!

and
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FIG. 5. This figure shows a the phase PSD obtained in a numerical simulation with threshold set at zero. Here the wave fo
modulated by a noise processes but by a fixed frequency term with a frequency ten times lower than the carrier frequency; Gaus
noise is also present in the original wave form. The PSD is the average of eight spectral densities, and each spectral density
obtained from 1024 samples.
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Therefore we find, as in the previous section, that the ph
PSD is proportional to the amplitude PSD, i.e.,

FPSD
„Dw~ t !….

s2

4A4
FPSD

„DA~ t !…. ~22!
se

The argument given above is not a real proof, but it sho
that it is plausible to expect an amplitude to phase no
conversion even when the threshold is set at zero amplitu
This conclusion is also supported by numerical simulatio
Figure 5 shows the PSD of the phase of a sinusoidal sig
modulated at a fixed frequency plus a white Gaussian no
the peak corresponds to the frequency of the modulation
velope.
ct times
ese phase
imulations
FIG. 6. This is what happens when the lower threshold is set incorrectly: the triggering circuit does not only trigger at the corre
but at other times in between. The clock rate is thus higher, and there are additional and rather large phase fluctuations. Th
fluctuations appear over many length scales, and thus the resulting phase PSD follows a power law. It turns out in the numerical s
that a Gaussian white noise leads to a 1/f 2 PSD.



ct
d
cu
. I
n
r

m
th
ar

ri
ea

a
n
f
t
t

el

the
a

: a
4

ac-
in

in
an
r-
tal

ever
ase
ase

ite

57 73AMPLITUDE TO PHASE NOISE CONVERSION IN . . .
C. Wrong setting of lower threshold

It is worthwhile to note that there is an additional effe
that shows up in the simulations when the lower threshol
set incorrectly, i.e., when it happens that the bistable cir
often retriggers almost immediately after one good trigger
these cases, the average crossing frequency is higher tha
real crossing frequency, and the crossing times show la
fluctuations with respect to the average. The numerical si
lations performed with a Gaussian white noise show that
PSD of these fluctuations follows a power law, and in p
ticular thatFPSD

„w(t)…}v22 ~see Fig. 6!.

D. Comments on the numerical simulations

A few caveats are in order when dealing with the nume
cal simulations. First it is not reasonable to expect a lin
behavior such as that in Eqs.~13! and ~22! for large modu-
lation signals: This means that rather lengthy simulations
required to bring the tiny peaks out of noise. The simulatio
must necessarily use sampled signals, and because o
limited numerical accuracy of any computer this is bound
produce beats between the sampling frequency and
modulation frequency: one of the many solutions that h
c
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overcome this problem is a very small randomization of
sampling time. However, even if the simulations involve
sampling mechanism they are — after all — quite realistic
real circuit like the commercial TTL Schmitt trigger 741
has a finite response time~in this case for most circuits on
the market it is of the order of 1028 s) and this is the
equivalent of a sampling time.

IV. SUMMARY AND CONCLUDING REMARKS

In this paper I have described a mechanism that may
count for the appearance of low-frequency phase noise
high-precision oscillators. Low-frequency noise is the ma
limiting factor to high-precision timekeeping, and thus
understanding of the origin of this noise is obviously impo
tant for many physics applications of these fundamen
measurement techniques@6,13#. The basic idea is that the
nonlinear threshold device used to count cycles, and the
present white noise, are the culprits of amplitude to ph
noise conversion, in a way that is reminiscent of the incre
of signal to noise ratio in stochastic resonance@14,15#. An
accurate choice of threshold and a minimization of wh
noise may thus help reduce low-frequency noise.
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